New Worst-Case Upper Bounds for MAX-2-SAT with Application to MAX-CUT

نویسندگان

  • Jens Gramm
  • Edward A. Hirsch
  • Rolf Niedermeier
  • Peter Rossmanith
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Max 2-Sat: Easier and Faster

Prior algorithms known for exactly solving Max 2-Sat improve upon the trivial upper bound only for very sparse instances. We present new algorithms for exactly solving (in fact, counting) weighted Max 2-Sat instances. One of them has a good performance if the underlying constraint graph has a small separator decomposition, another has a slightly improved worst case performance. For a 2-Sat inst...

متن کامل

Improved Bounds for Exact Counting of Satisfiability Solutions

An algorithm is presented for exactly solving (in fact, counting) the number of maximum weight satisfying assignments of a 2-SAT formula. The worst case running time of O(1.2461) for formulas with n variables improves on the previous bound of O(1.2561) by Dahllöf, Jonsson, and Wahlström. The weighted 2-SAT counting algorithm can be applied to obtain faster algorithms for combinatorial counting ...

متن کامل

MAX-SAT for Formulas with Constant Clause Density Can Be Solved Faster than in O(2) Time

We give an exact deterministic algorithm for MAX-SAT. On input CNF formulas with constant clause density (the ratio of the number of clauses to the number of variables is a constant), this algorithm runs in O(c) time where c < 2 and n is the number of variables. Worst-case upper bounds for MAX-SAT less than O(2) were previously known only for k-CNF formulas and for CNF formulas with small claus...

متن کامل

MAX-SAT for Formulas with Constant Clause Density Can Be Solved Faster Than in O(s2) Time

We give an exact deterministic algorithm for MAX-SAT. On input CNF formulas with constant clause density (the ratio of the number of clauses to the number of variables is a constant), this algorithm runs in O(c) time where c < 2 and n is the number of variables. Worst-case upper bounds for MAX-SAT less than O(2) were previously known only for k-CNF formulas and for CNF formulas with small claus...

متن کامل

On Approximation Algorithms for Hierarchical MAX-SAT

We prove upper and lower bounds on performance guarantees of approximation algorithms for the Hierarchical MAX-SAT (H-MAX-SAT) problem. This problem is representative of a broad class of PSPACE-hard problems involving graphs, Boolean formulas and other structures that are de ned succinctly. Our rst result is that for some constant < 1, it is PSPACE-hard to approximate the function H-MAX-SAT to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000