New Worst-Case Upper Bounds for MAX-2-SAT with Application to MAX-CUT
نویسندگان
چکیده
منابع مشابه
Exact Max 2-Sat: Easier and Faster
Prior algorithms known for exactly solving Max 2-Sat improve upon the trivial upper bound only for very sparse instances. We present new algorithms for exactly solving (in fact, counting) weighted Max 2-Sat instances. One of them has a good performance if the underlying constraint graph has a small separator decomposition, another has a slightly improved worst case performance. For a 2-Sat inst...
متن کاملImproved Bounds for Exact Counting of Satisfiability Solutions
An algorithm is presented for exactly solving (in fact, counting) the number of maximum weight satisfying assignments of a 2-SAT formula. The worst case running time of O(1.2461) for formulas with n variables improves on the previous bound of O(1.2561) by Dahllöf, Jonsson, and Wahlström. The weighted 2-SAT counting algorithm can be applied to obtain faster algorithms for combinatorial counting ...
متن کاملMAX-SAT for Formulas with Constant Clause Density Can Be Solved Faster than in O(2) Time
We give an exact deterministic algorithm for MAX-SAT. On input CNF formulas with constant clause density (the ratio of the number of clauses to the number of variables is a constant), this algorithm runs in O(c) time where c < 2 and n is the number of variables. Worst-case upper bounds for MAX-SAT less than O(2) were previously known only for k-CNF formulas and for CNF formulas with small claus...
متن کاملMAX-SAT for Formulas with Constant Clause Density Can Be Solved Faster Than in O(s2) Time
We give an exact deterministic algorithm for MAX-SAT. On input CNF formulas with constant clause density (the ratio of the number of clauses to the number of variables is a constant), this algorithm runs in O(c) time where c < 2 and n is the number of variables. Worst-case upper bounds for MAX-SAT less than O(2) were previously known only for k-CNF formulas and for CNF formulas with small claus...
متن کاملOn Approximation Algorithms for Hierarchical MAX-SAT
We prove upper and lower bounds on performance guarantees of approximation algorithms for the Hierarchical MAX-SAT (H-MAX-SAT) problem. This problem is representative of a broad class of PSPACE-hard problems involving graphs, Boolean formulas and other structures that are de ned succinctly. Our rst result is that for some constant < 1, it is PSPACE-hard to approximate the function H-MAX-SAT to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 7 شماره
صفحات -
تاریخ انتشار 2000